Remote Access, Multi-User Electronic Circuits Labs via LAN & Internet

Real hardware labs, controlled via web browser

Unpack, power-up and run your own remote lab program in minutes

EMONA Instruments www.netCIRCUITlabs.com

netCIRCUITIabs CONTROL UNIT with MULTIPLE PLUG-IN BOARDS

netCIRCUIT/abs Control Unit connects router, hub or LAN. Lab Experiments board shown not plugged-in.

- The netCIRCUITIabs Control Unit, located in your lab or office, and will accept any netCIRCUITIabs Lab Experiment board.
- One Lab Experiment board can be plugged into the Control Unit at one time.
- Fast and easy implementation. No software to load and no setting up required.
- The Control Unit automatically detects the current experiment board. The Control Unit contains all server and interface requirements, ready to connect by single CAT5 to LAN.

 Studies show inexperienced students believe hardware more than simulation
The ideal learning path for students: BREADBOARDING > REMOTE HARDWARE > SIMULATION introduction many topics advanced
Eliminates storage issues, maintenance and lab overcrowding

EASY BROWSER ACCESS FOR STUDENTS and MANAGEMENT FOR PROFESSORS

net CIRCUIT labs experiment accessible via LAN and Internet using PC, laptop and tablet web browser.

- At least 30 students can SIMULTANEOUSLY access the netCIRCUITlabs Control Unit. Experiments are available 24 hours a day, 7 days a week.
- Each student can select and operate the experiment of THEIR CHOICE. All experiments are available to each and every student.
- Students instantly access experiments via their web browser. There is no software to load: only USERNAME and PASSWORD is required.
- Professor has instant web access to the secure Server Administration pages for simple student set-up, management and monitoring usage.
- Easy to integrate into existing CMS.

View Active Users	Press this to View the currently active users (last 5 minutes): [New Active Users]
Edit Student Database	Press this to edit the student database: adt
Upload student database	This should be a comma separated values (.csv) file with each line the form loginit2,password, full NameStudents File (choose File, No Ne choose (Bubmit)
View performance logs	Press this to View the Performance Logs: [PerformanceLogs]
View Student Usage logs	Press this to View the Student Usage Logs: Usage Logs
Delete logs	CAUTIONI This will delete all performance and student usage log file delete
Change Admin Password	Enter new password Enter it again submit
Change Home Page Logo	Choose a new file for the logo (must be a .gif file) Choose File No file chosen (submit)
Update Software	CAUTIONIII Only use this under instruction from Emona Instruments Update File Choose File No file chosen [submit]
Set Time and Date	Year 2017 Month (1-12): 5 Day (1-13): 5 Hour (0-23): 5 Hour (0-23): 5 Hour (0-23): 6 Hour (0-59): 8 Bott
Set IP address	IP address: (192,168,132 Netmask: 305,206,09 Geteway: (192,168,11 DMS Servert: 192,168,11 PMT Number: (111 sums
Reboot	Press this to REBOOT: Reboot

The professor's administration page

netCIRCUITIabs EXPERIMENT BOARDS

REL 1.0 Build Your Own Circuits plug-in board

REL 1.0 BUILD YOUR OWN CIRCUITS BREADBOARD

- 1. Large 2,692 point solderless breadboard with distribution strips and component breadboading area.
- 2. User remotely controllable potentiometers: 7 x 10kR; 1 x 100kR
- 3. User remotely controllable SPST switches: x 4
- 4. User remotely controllable SPDT switches: x 4
- 5. User remotely controllable oscilloscope multiplexer inputs: 4 x 4 channels
- 6. User remotely controllable digital outputs (HI/LO signals): 16 outputs
- 7. Protected DCV power supply: +5V, +12V, -12V

REL 2.1 Basic Analog Circuit Experiments Lab plug-in board

REL 2.1 EXPERIMENT CIRCUITS

- 1. Voltage divider biasing
- 2. DC quiescent conditions
- 3. AC performance of CE BJT
- 4. Unloaded voltage gain
- 5. Loaded voltage
- gain 6. Cascaded amplifiers

12. SCR dimmer

13. OTL amplifier

Example of the 2 Stage AC Amplifier

REL 2.2 Op-amp Circuit Experiments Lab plug-in board

REL 2.2 EXPERIMENT CIRCUITS

- 1. Dynamic range
- & slew rate
- 2. Open loop
- 3. Input offset voltage & current
- 4. Common mode
- 5. Inverting amplifier
- 6. Non-inverting
- amplifier 7. Voltage follower
- 8. Summing amplifier
- 9. Differential
- amplifier

- 10. The intergrator 11. The differentor 12. Combined
- integration &
- differentiation
- 13. Squarewave
- 14. Duty cycle
- 15. Triangle wave
- 16. Sawtooth wave

REL 3.0 Combinational & Sequential Logic Lab Experiments plug-in board

REL 3.0 LOGIC FUNCTIONS - students patch together real logic elements on-screen, in real time

All the logic functions and connections are implemented in an FPGA.

SIGNAL SOURCES:

- HI/LO Logic Switches x 8
- 8 bit Binary Counter
- 4 bit Gray Counter - 4 bit Johnson Counter

OVER 60 GATES & FLIP-FLOPS:

2, 3 & 4-input OR gates X-OR gates 2, 3 & 4-input AND gates Inverters S/R, D & J/K Flip-Flops, Inverters Finite State Machines

STUDY:

- Design of FSM
- Registers, Counters,
- Multiplexers, Encoders etc
- Introduction to HDL (Verilog)

٢

٢

- generator

 - generation
 - generation

REMOTE CONTROL OF EXPERIMENTS

- Analog experiment selection is by drop down menu
- Analog circuits include student controllable switches and potentiometers
- Digital logic experiments are patched together from a selection of independent gates
- Fully self contained, with inbuilt test instruments including oscilloscope, spectrum analyser, cursor measurements and full function signal generator.
- Load and Save Digital Logic Experiment wiring

ANALOG EXPERIMENT SELECTION

EXPERIMENT CONTROL

open and close switches

Drag mouse on-screen to vary potentiometer with high resolution drag mode

10k

VR1 10k

OSCILLOSCOPE & SPECTRUM

4 channel in-built oscilloscope, plus

- Spectrum display
- XY display
- Waveform Maths, Voltage and Frequency measurement
- Easy cursor measurement

DIGITAL LOGIC LIVE PATCHING

Students build digital logic experiments by selecting and patching real logic gates and functions. Over 60 independent elements are provided.

FUNCTION GENERATOR

Squarewave output

Sinewave output

Std = 121Xms 142

Emona Instruments Pty Ltd

78 Parramatta Road Camperdown NSW 2050 AUSTRALIA Tel: +61-2-9519-3933 Fax: +61-2-9550-1378 URL: www.netCIRCUITlabs.com Email: sales@emona-tims.com

Available from: